
On the 3D Ising spin glass

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1994 J. Phys. A: Math. Gen. 27 2687

(http://iopscience.iop.org/0305-4470/27/8/008)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 01/06/2010 at 23:18

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/27/8
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


1. Phys. A: Math. Gen. 27 (1994) 2687-2708. Printed in the UK 

On the 3D Ising spin glass 

Enzo Marinarittl, Giorgio Parisiin, and Felix Ritortfllb 
t NPAC and Department of Physics, Syracuse University. Syracuse. NY 13244. USA 
3 Dipartimento di Fisica and LNFN. Universiti di Roma Tor Vergafo. Vlale della Ricerca 
Scientific% 00173 R o w  Italy 
5 Dipanimento di Fisica and INFN. Universiti di Roma Lo Snpienra. P. Aldo Mor0 2, 001 85 
Roma, Italy 
I1 Depam"t de Fisica Fonamental. Univetxitnt de Barcelona. Diagonal 645, 08028 
Barcelona. Spain 

Received 21 October 1993 

Abstract We study the 3D king spin glass with i l  couplings. We use a Hamiltonian with 
second and third nearest-neighbour intenction. We use hnite-size scaling techniques and very 
large lattice simulations. We find that our data can be described equally well by a finee.T 
transition or by a T = 0 singularity of an unusual type. 

1. Introduction 

Three-dimensional spin glasses [ 1,2] are a fascinating subject. Numerical simulations here 
are particularly interesting [3-91, since for such models (the real thing) it is very difficult to 
obtain reliable analytical results (see, however, [lo]). Up to now numerical simulations for 
the king case have been shown to have a phenomenology very similar to the experimene 
on real spin glasses (for recent simulations and analytical results about, for example, aging 
phenomena, see [Il l) .  The study of small-size systems (up to a linear size L = 14) has 
shown a reasonable agreement with the predictions of broken replica theory, but it is not clear 
how much information about the thermodynamic limit can be inferred from the behaviour of 
small systems. In particular one has to be careful about extrapolating the pattern of replica 
symmetry breaking from small to large lattices. Here our aim has been to reconsider the 
whole subject and try to clarify the emerging physical picture at low temperature T. 

We will deal with the problem of the nature and the existence of a phase transition. A 
cursory look at the history of the subject is useful. If we look at the period that begins when 
people first investigated the subject of disordered spin systems we can easily establish that 
there have been periodic oscillations, with periods of the order of seven years. Researchers 
in the field have been oscillating between the credence that there is a sharp transition and 
the belief that there are no transitions at all (as is maybe true in real glasses) and that when 
lowering T there is only a gradual freezing of the dynamical degrees of freedom. At the 
beginning, theoreticians had (at the same time) a different credence from the experimental 
researchers. The two groups had a different frequency of oscillation, and now there is 
consensus that the system undergoes some kind of phase transition. 
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We have run long numerical simulations at various temperatures, doing our best to 
distinguish between these two possibilities. In our analysis we have been very much inspired 
by the approach and the doubts of Bharr, Morgenstern, Ogielsky and Young [3-6,8,9], and 
we have tried to build on and improve their results. We have found that the whole set 
of our data is closely compatible with the possibility that there is a transition at a given 
non-zero T. Such a transition would be characterized by a large value of the exponent 
y ,  close to 2.5 ( y  is the usual susceptibility exponent, which will be defined later in a 
more precise way). The whole set of data is also compatible with a large set of possible 
reasonable functional dependencies, which imply a transition temperature of zero. Recent 
studies using improved Monte Carlo techniques [12-14] also find that doubts about the 
existence of a finite-T critical behaviour are justified-see [ 151 and references therein, The 
difficulty of resolving between the two behaviours is because a large value of y implies that 
the system is not far from being at its lower critical dimension (at which, according to the 
conventional wisdom, y + CO). The distinction between a system at the critical dimension 
and a system very close to it is particularly difficult to make. We believe, however, that we 
are not too far from being able to distinguish between the two models, and that an increase 
in the simulation time of one or two orders of magnitude could clarify the situation. Of 
course, precise theoretical predictions on the behaviour of spin glasses at the lower critical 
dimension would be invaluable. 

We have studied the 3D Ising spin glass, with + I  couplings, but have not used the 
standard first-neighbour model. Hoping for some gain, we have simulated a slightly modified 
model with second- and third-nearest coupling. The reason for introducing this model is that 
in the conventional model (on the usual cubic lattice) the interesting pseudo-critical region 
is at very low temperatures. In this region sensible numerical simulations are extremely 
demanding on computer time, due to the extreme difiiculty in crossing even small barriers. 
We also believe that a systematic comparison of results obtained with different Hamiltonians 
may be useful in finding out those universal features that are independent of the detailed 
form of the Hamiltonian. 

In section 2 we define the model we use and the quantities we measure. In section 3 we 
present the results obtained by using finite-size scaling on small lattices (from 43 to 143), 
while in section 4 we present the results obtained on a large lattice 64’ x 128. Finally, in 
section 5 we present ow conclusions. 

2. The model and the  observable physical quantities 

We consider a three-dimensional Ising spin glass model on a body-centred cubic lattice. In 
this model, the lattice sites are labelled by an integer valued three-dimensional vector i. 
The spins are defined on each lattice point and take the values -1 or 1. 

The Hamiltonian of the model (with couplings Ji,k that can take the three values 0 and 
2 ~ 1 )  is 

The couplings J may be zero or take randomly a value f l .  In the simplest version of the 
model J1.k is different from zero if and only if 

li - kl = ((i, - kX)’ + (iy - kY)’ + ( i r  - kz)2)”2 4 r. (2 )  
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Different models may be obtained by changing the value of r .  In the limit r .--f 00 we 
recover the infinite-range SK modcl, while for r = 1 we have the usual short-range nearest- 
neighbour model. In this paper we will discuss the model with r = 3’12, which corresponds 
to having J # 0 when all the following three conditions are satisfied 

l i x - k x l < l  l t y - k y [ < l  l i r - k z l < l  (3) 

and li - kl # 0. A crucial parameter in the model is the effective coordination number 
z ,  which is the number of spins that interact with a given spin (for r = 1, z = 6 and 
for r = 3Il2, z = 26). For large values of z the energy is proportional to z1lZ. On a 
Bethe lattice (which is a refined mean-field approximation) the critical temperature may be 
computed exactly [16], and one finds that 

( z  - I )  tanh(ptjefi.)z = 1. (4) 

In this approximation one finds T ~ ~ ~ ~ )  = 2.08 and TitZ) = 4.93. One difficulty with 
the original r = 1 model is that the hypothetical critical temperature is small (about 1.1). 
Since under a single spin-flip the minimum change of the energy is 4, such a low value of 
the critical temperature implies a very small acceptance rate (about 2%) for Monte Carlo 
steps in which we try to change the energy. This effect should disappear for the r = 3llZ 
theory. Moreover, a different form of the lattice action may be useful to disentangle the 
lattice artifacts from the universal behaviour. 

In the particular case of the 3D king spin glass a large value of z should increase the 
system similarity to the infinite-range model. In a system at the lower critical dimension 
for high values of z we should see a sharp change of behaviour from the predictions of the 
mean-field theory to the asymptotic low-energy behaviour. 

In order to define interesting observable quantities it is convenient to consider two 
replicas of the same system (U and 5 ) .  The total Hamiltonian reads 

H = H[u] + H [ r ] .  (5 )  

For the two replica systems we can define the overlap 

qi = uiri (6) 

which will play a crucial role in our analysis. We introduce the correlation function of two 
q’s as 

We can use this correlation function to define a correlation length. From high-temperature 
diagram analysis (or from the field theoretical approach) we expect that for large separation 

We can define an efective mass as 
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We expect that at large i 

In our numerical simulations we have not measured the full G(i). We have measured 
the zero two-momentum Green functions 

where d now runs only in one lattice direction. We will label with a superscript ('1 this kind 
of quantity. We have also measured the sitesite correlation function. hut only summing 
over contributions where one single coordinate changes (by swapping the lattice in  a single 
chosen direction). Here the coordinate increment has the form ( x ,  0.0). We will denote 
quantities defined in this way with a superscript ( I ) .  

In a similar way, in a finite volume we can introduce the quantity 

In the infinite-volume limit the spin glass susceptibilirq. is defined as 

where the upper bar denotes the average over the different choices for the disorder. 
We expect the spin glass susceptibility and the correlation length to diverge at the critical 

temperatures with critical exponents y and U, respectively. Below the critical temperature 
in the mean-field approach xo is proportional to the volume. More generally in the broken 
replica approach one finds that 

where q ( x )  is the order parameter function defined in [I] .  

the usual magnetic susceptibility (divided by b) defined as 
In the high-temperature phase no interesting physical predictions can he obtained for 

m being the total instantaneous magnetization (m = ( I /  V )  E, U!). Gauge invariance implies 
that at thermal equilibrium 

x = 1. (16) 

At T c T, this equality is valid after summing over all configurations with the conect 
Boltzmann weight. If we restrict the sum only to configurations in a given equilibrium state 
this identity does not apply. 
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3. Finite size scaling 

We will discuss here results obtained on small lattice sizes, in situations where typically 
L >> f .  Since our goal is to establish or disprove the existence of a critical behaviour for 
T > 0 let us start by sketching the predictions of a finite-size scaling analysis. If scaling is 
satisfied in the vicinity of a critical point (at T > 0), we expect 

xo - L2-V f (LlO (17) 

where q is the anomalous dimensions of the operator q defined in (12) and f is the correlation 
length that is expected to diverge at the critical temperature. Moreover, to establish the 
existence of a finite critical temperature it is useful to use the Binder parameter to locate 
the transition point, it is defined by 

_ _  
.&!U) = t ( 3  - ( q 4 ) / ( ( 4 2 ) ) 2 ) .  (18) 

If a finite-T phase transition exists we expect the curves g ( T )  obtained for different 
lattice sizes to cross (asymptotically for large enough lattices) at T,, This is quite a precise 
method of finding the location of a critical point. For a T = 0 singularity the same curves 
will merge into a single curve as T + O+. We will see that the possibility that the exponent 
U characterizing the divergence of the correlation length is greater than one makes it arduous 
to distinguish between these two cases. 

As we have already discussed, we want to distinguish between two different scenarios. 
In one case there is a finite temperature transition and the correlation length diverges like 
f - (T - T,)-". In our finite-size scaling analysis we will use the large lattice best fit to 
Tc, y and v from section 4. If a transition exists we have a precise determination of the 
critical exponents and parameters. 

We should note here that if three is the lower critical dimension and we have a T = 0 
singularity, it is not clear that the scaling relation (17) is satisfied. As we will discuss, our 
results suggest that if the scenario of a T = 0 phase transition holds such scaling behaviour 
could not hold. This violation of scaling appears in the Heisenberg model in two dimensions 
and is a consequence of the existence of the Goldstone modes. In the O ( N )  symmetric 
Heisenberg model for N z 2 the correct scaling laws contain an effective exponent 

xo - L2-"L'c) f ( L / S )  (19) 

where ~ ( 0 )  = 0. The dependence of the exponent on LIS is due to the instability of the 
T = 0 fixed point. In the N = 2 case, there is no renormalization of the coupling constant 
(i.e. of the temperature). In the low-temperature phase one finds the simpler equation 

xo - L2-V'T' f (L IS )  (20) 

where the function q ( T )  is not a universal function. Its value at the transition point, 
i.e. q(Tc), is universal and it is equal to f. 

We have simulated lattices with linear size L = 4 , 6 , 8 ,  IO. 12 from T = 5.4 down to 
the lowest temperature at which we were sure to have thermalized (T = 2.6 for L = 4 and 
T = 3.6 for L = 12). We have computed the overlap between two identical copies of the 
system, defined in (12). 

We have been careful to check that we have really reached thermal equilibrium. We 
have used as a basic criterion the condition that ( q )  was compatible with zero for each 
sample. 



2692 E Marinari et a1 

T 

"J . 
H 

Figure 1. The Binder parameter g(T) as a function of 
the temperature T for different laltice sizes. 

Figure 2 The scaled overlap susceptibility xo /L2  
plmed against the scaled reduced critical tempenture 
(T - TJ L'/", 

We show in figure 1 the Binder parameter defined in (le), for different values of T. 
We cannot distinguish any crossing, but we can clearly see some merging of the different 
curves. 

From the large lattice results (see section 4) we can use the values T, = 3.27. y = 2.4 
and q - 0 (see (36)) to check the consistency of the finite-size behaviour with a finite-T 
transition. In figure 2 we plot x0/L2 against (T - Tc) L"". The data collapse into a single 
curve, showing a good scaling behaviour, on both sides of T,. It is already clear from these 
first data (illustrated in figures 1 and 2) that it will be exceedingly difficult to distinguish 
between the two candidate critical behaviours (with Tc = 0 or T, # 0) .  

To understand better what is happening in the pseudo-critical region, for T close to 3.3, 
it is interesting to apply a magnetic field h to the model. We expect q to scale as h2@. 8 
is related to 7 by the hyper-scaling relation 

d - k Z - 7  
d - 2 + q '  

s =  

In the presence of h the correct definition of the overlap susceptibility requires subtraction 
of the connected part, i.e. 

For a finite-T phase transition the scaling relation (17) is still satisfied, but now (we are 
sitting at T,) 5 diverges as 

(23) 

Equation (23) only depends on the critical exponent 7. Once we have measured T,, and 
established that a finite-T phase transition exists, we can use (23) to find q. 

It turns out that the correct overlap susceptibility we have just defined in (22) is not 
a good observable for checking scaling. It depends on the first moment of (q )  that is 
affected by strong finite-size corrections. This is because the region of negative overlaps 
with q < 0 is only suppressed in the infinite-size limit. We have found it preferable to 
study the behaviour of the non-subtracted 0, i.e. the overlap susceptibility defined in the 

{ ( h )  ~ h-2(6+1)/dd 
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absence of h divided times the volume. Here we expect the scaling (17) divided times L', 
i.e. a scaling with L with the power -(1 + q) ,  

We have run numerical simulations in the presence of a magnetic field. In figure 3 we 
show (42) for several lattice sizes L = 5.7 ,9 ,  11. 13 and different values of the magnetic 
field (ranging from h = 0 up to h = 1.5). Again we find consistency with T, = 3.27. The 
preferred value for q is negative and close to -0.1. Let u s  stress that none of the finite size 
scaling fits give very precise predictions. There are many free parameters. and that makes 
the fitting procedure questionable. Still we should note that all the exponents we find, when 
assuming a finite-T transition, are fully compatible with the ones found for the r = 1 model 
in the previous works [3-6]. 

-1 . 
x 

Figure3. Therescaled ( q 2 )  as afunction ofthe rescaled 
applied magnetic field, for different lattice sizes. 

Figure 4. The rescaled ,yo as a function of L / e .  This 
scaling is compatible with a singularity at 7 = 0. 

As we already hinted, the finite-size scaling results are also compatible with a T = 0 
singularity. We will use the best value (45) of the parameters defined in (44). In figure 4 
we show the rescaled susceptibility ~0 (again without magnetic field, now) for the different 
lattice sizes. The curves for different lattice sizes scale tremendously well, and a comparison 
with figure 2 is instructive. This is, as we will discuss in the following, fully compatible 
with the results obtained for the large lattice size, in a regime where 5 >> L .  

If the transition is at T = 0 the usual scaling laws imply that the correlation function at 
large distance behaves as x-c, with r = d - 2 +  q, When the ground state is not degenerate 
the T = 0 correlation function tends to a constant value at large distance, implying < = 0 
and in 3D q = -1 .  The value we estimate for q turns out to be not so close to - I ,  and 
using q = -1 does not make our curves scale. 

# 0 in 3D Ising spin glasses (our 
best fit is close to F - 0.6). This possibility cannot be excluded. For example in ZD [6] 
C is estimated to be in the range 0.2-0.3. In our case, where the coupling constants J 
take the values &l,  the ground state is highly degenerate, and there are no general a priori 
reasons for < = 0 to hold (however, it has been suggested in 1171 that at the lower critical 
dimension we indeed expect r = 0). The other possibility is that to get good scaling for 
q we have to go to lower values of T. Here we have been obliged to stop at not too low 
values of T, and it is quite possible that the value of ?J in this temperature range is quite 
different from its zero-temperature limit. 

In figure 5 we have tried to show the scaling behaviour in a suggestive form. We plot 
~ o ( L ) / x o ( w )  as a function of L/c  for the different lattice sizes. The values of XO(W) 
and 6 are those discussed in the next sections and computed on very large lattices (which 

Here we see two options. One possibility is that 
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we judge to be free from systematic errors in our statistical precision). The data smoothly 
collapse into a single curve. 

From these data it is not clear if the 30 king  spin glass undergoes a finite-T phase 
transition (and the puzzling behaviour of Binder cumulant generally seems to point toward 
something different). If we assume a finite T, our predictions for the critical exponents 
agree with those reported in the literature (for the first-neighbour cubic lattice model). 

Though high-temperature expansions predict a finite-temperature transition (which 
agrees with that found in numerical simulations) we consider the compatibility of our data 
with a T = 0 phase transition serious (and we will discuss this kind of evidence in more 
detail in the next section, when discussing our large lattice results). 

Figure 5. The overlap susceptibility divided by the 
asymptotic large lattice value (which we denote here 
by xi) plotted against Lit.  The line is the best fit to 
the form (31). 

Figure 6. K as a function of L15. 

As we have already remarked, the behaviour of the Binder cumulant below Tc is different 
from what happens in normal spin systems. It is also very different from what one measures 
in spin glasses in high dimensions, and a few more comments may be in order. Let us 
consider what happens in the usual ferromagnetic king case, by defining the function 

g ( T )  lim g ( T ,  L) (N) 
L+CC 

where here g(T,  L) is defined in terms of the moments of the order parameter m. the total 
magnetization of the system. In this non-disordered case we have that 

Moreover, the quantity g, = g(T,) is a function of the dimensionality of the system. It 
increases when the dimension decreases, and tends to one at the lower critical dimension. 

The situation is different in spin glass models. In this case in the mean-field 
approximation g ( T )  is non-trivial at low temperature. One finds that below T, 
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Using the mean-field expression for the dependence of q ( x )  on T one finds that 

g- lim g ( T )  = 1 
T- T; 

but the function g ( T )  is non-trivial. The statement g # 1 coincides with the fact that the 
P ( q )  is not equal to a &function, and implies replica symmetry breaking. In the mean-field 
approximation no closed formula exists for g, however one finds that qualitatively g behaves 
as 

In other words 1 - g ( T )  vanishes linearly both at zero temperature and at the critical 
temperature. For T > T, one still finds that g(T) = 0. Below the upper critical dimension 
(d:) = 6) .  according to the prediction of [17], g- becomes different from one. Slightly 
below d = 6 the function g(T)  is not monotonic, but it is possible that it becomes monotonic 
at sufficient low dimensions, i.e. near three dimensions. It is tempting to conjecture that 
near the critical dimension one finds that g, becomes close to g-. It is difficult to assess 
quantitatively the values of these two quantities. If we use our best estimate for T, we find 
g- 2 (0.65 rt 0.05) (using our small lattice data for T < T J ,  and a very similar value for 
g, (from the data at the estimated critical temperature). We can only tentatively conclude 
that: . The L independence of g ( L ,  T )  in the (pseudo-)low-temperature phase and the fact that 

g ( L .  T )  is different from 1 is a clear signal that replica symmetry is effectively broken 
in this region. This is because g # 1 in the thermodynamic limit implies a non-trivial 
function P(q) .  Obviously if there is no finite-T phase transition this symmetry breaking 
will eventually disappear for very large lattices, but it will correctly describe the physics 
of the system for large lattices with L smaller than the exponentially large correlation 
length e.  
The shape of the function g ( T )  is in qualitative agreement with the predictions of the 
renormalization group and it suggests that the lower critical dimension is close to three 
(and very probably exactly three [18]). 

Let us now discuss in some detail the form of finite-size effects. This is very interesting, 
mainly since we have to plan larger scale numerical simulations, and we want to be sure 
to optimize the use of our computer time. We will describe here the strategy that should 
eventually lead us to a numerical simulation in which we can establish in a clear way which 
kind of singularity the 3D Ising spin glass undergoes. For lattice sizes much larger than 
the correlation length one finds that (in the presence of periodic boundary conditions) the 
finite-volume corrections are exponentially small. The leading correction can be computed 
in perturbation theory, giving 

where C is some computable constant, and A is the coupling constant of a @)-like interaction 
in a field-theoretical framework. Close to the critical point the usual scaling laws imply 
that the quantity f3A2 tends to a constant. So we obtain 
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We have fitted our data for the correlation length on small lattices, divided by the large-lattice 
result, as 

The best fit works very well. We show it in figure 5. For a finite temperature transition 
C is important. It is universal, and in principle it can be computed in a field-theoretical 
renormalization approach. 

These data are relevant since they are crucial for planning simulations free of finite-size 
effects on large lattices. We see that if we require finite-size effects to be smaller than 1% 
we need to have L / [  > 6,  while to reach a 10% accuracy we can accept L / c  > 3.5. 

In a similar way it is interesting to compute 

- 
X i  - xi2 K =  -2 . 

xo 

The quantity K measures the susceptibility to system-to-system fluctuations. We expect 
it to have similar properties to the Binder cumulant g, In particular at low temperatures 
mean-field predicts that 

In other words mean-field theory predicts that 

The size. dependence of K can be used to estimate the number of different realizations 
of the quenched disorder we need to extract an accurate value of ,yo. 

The measurement of K is rather delicate because for each system we must know the 
value of (4') with high accuracy. In figure 6 we plot K as a function of L / [  for L = 6. 
The knowledge of K is useful in estimating the size of sampleto-sample fluctuations when 
planning a numerical simulation. Our result indicates that, for example, one must go to 
L / c  greater than four in order to have fluctuations of less than 30% in the spin glass 
susceptibility. 

4. Large-lattice results and discussion 

Our large lattice runs have been done on a 64 x 64 x 128 lattice, on the 8192 processor 
DECmpp at Syracuse NPAC. We have always studied the evolution of two replicas of the 
system in the same realization of the quenched disorder. In this way we have been able to 
compute the overlap between two replicas. 

We have studied the behaviour of the system for two different realizations of the 
quenched random couplings. We give in table 1 the details about the two series of runs (the 
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Table 1. The number of millions of MC sweeps we used for the two different realiwlions of h e  
couplings. We give fhe number of thermalization sweeps, plus (+) the number of sweeps used 
for measuring. 

T Sample I Sample 2 

6.0 -t 4.4 0.005 + 0.5 
4.3 -+ 3.8 0.5 + 2.0 0.5 + 2.0 
3.7 0.5 + 4.5 0.5 + 14.5 
3.6 2.5 t 9.0 2.5 + 30.0 

5 

" 
1 . , , , 1 , , . , ,  

3.5 4 4.5 5 5.5 6 
T 

Figure 7. xo. the overlap susceptibility, for the two realizations of the random couplings. 

number of millions of sweeps is for each of the two replicas we studied in a given coupling 
realization). 

We studied two different realizations of the random noise, mainly to check the size of 
the fluctuations of XO. We wanted to be sure that even for our T point closer to criticality 
(T = 3.6) sample-to-sample fluctuations are not too dramatic. In figure 7 we show that 
in the worst case the two results for xo deviate by less than two standard deviations (in 
this and in the following figures the smooth curves just join the Monte Carlo data points 
with straight segments). But we know from our binning analysis that the error we quote is 
probably slightly underestimated at the lower T values. So we find this result reassuring 
and consistent with the serious critical slowing down that we observe and with critical 
fluctuations. 

The internal energies of the two systems are completely compatible (figure B), as is 
the specific heat (which we measure both from equilibrium fluctuations and from the T 
derivative of the internal energy; figure 9). We feel confident that on the 64 x 64 x 128 
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-" 0.84 " I " "  I ' , * ' I " ' '  

./ 

3.5 4 4.5 5 SS 6 
T 

Figure 8. As in figure 7, but for the two intemd energies. 

0.07 

0.06 

# 

2 

B 0.05 
.- - ._ 
D v1 

0.04 

, , . . , I . , , , ,  

4 4.5 5 5.5 6 
T 

Figure 9. As in figure 7. but for the specific heats, The points with large statistical noise an 
fmm the energy fluctuations. while the ones with smaller noise are from T derivatives of the 
internal energy. 
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lattice results do not vary much with the sample, and in the following we will discuss results 
averaged over the two realizations of the quenched disorder. 

We have estimated statistical errors by a binning analysis. We have systematically 
blocked the data in increasingly coarse sub-samples, to check statistical independence of 
the configuration groups eventually used for the final error analysis. Apart from for the two 
lower T values (3.6 and 3.7) we have always reached a very reliable estimate of the true 
statistical error. In the two last cases the error seems to be stabilizing under binning, but 
the evidence is less compelling, and we would allow for a possible small underestimation 
of the statistical error (of less. say, than 50%). 

For T going from 6.0 down to 4.4 we present errors based on nine blocks of the order 
of 50000 configurations (the actual measurements were taken just once in 200 sweeps). 
From 4.3 down to 3.8 we have nine blocks of the order of 400000 configurations each. At 
T = 3.7 we have used five blocks of 3 x lo6 configurations, and at T = 3.6 six groups of 
6.5 x IO6 configurations. 

In figure 10 we plot the final overlap susceptibility, averaged over the two coupling 
realizations, as a function of the temperature T. 

P ' " " " " " ' " " " " ' ' " ' !  

""I i 

i 

l ~ , , , , l , , , , l , , , , l , , , ~ l , , , , l ~  

3.5 4 4.5 5 5.5 6 
T 

Figure 10. The overlap susceptibility, averaged over the two different samples. 

Our main goal has been to try and establish (or disprove) the existence of a finite-T 
phase transition for the 3D spin glass model under study. Since correlation times diverge 
very fast when approaching the low-temperature region (or T:, if it exists), we are not in 
an easy situation. On a large lattice we have to look at data far away in the warm phase 
(the one we can check and trust to be thermalized), and try to decide which kind of critical 
behaviour they have. 
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At first we have tried fitting xo with a power divergence at the critical temperature T,, 
i.e. 

where the subscript p stands for power fit. We show in figure 1 l(a) our best fit, obtained 
by using all the data points shown in the figure. The results are 

Tc = 3.27 & 0.02 (36) 

We do not attach much significance to the statistical errors quoted here. They are reasonable 
estimates of a standard fitting routine, but not the result of a detailed study of a very complex 
three-parameter fit. We will see in a moment that the main issue here is not the statistical 
error, but the systematic error, which is, as far as we can judge from the present data, 
infinite (see later). 

A i  = 19.3 f 1.1 y = 2.43 k 0.05. 

power f i t  

300 

250 exponential fit 

200 

s 
150 

100 

50 

0 

3,5 4.5 5 5.5 6 3.5 4 4.6 5 5.5 
f T 

Figure 11. The overlap susceptibility, as in figwe 10. Here the curves me the results of the 
best fits. In (a) the result of the power fit to the form (35) an shown, and in (b)  the result of 
the power fit to the form (38). 
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Obviously one would like to select a T region that would allow a good scaling behaviour 
to be exposed (and to be obliged from the fit to discard a high-T region where scaling 
corrections are important and a region close to T, where finite-size effects become sizeable). 
This would amount, in some sense, to finding at least the size of the first corrections to 
scaling. In the present case we have to compromise on the quality of the results in (36). 
which is, still, reasonably good. We have checked that by fitting only points close to TE we 
get results that are not so different from the ones given in (36). For example if we fit from 
T = 5.0 down to T = 3.6 we obtain y = 2.67 i 0.06 and T, = 3.20. 

Let us repeat that here the problem will turn out to be mainly the systematic error. 
The second functional behaviour we have tried assumes no critical point, but an essential 

singularity at T = 0. We have first tried the form 

xo=AA:(exp[(B:/T)'}- 1)+C: (37) 

where the subscript e stands for exponential fit. The power P turned out to be very close 
to 4 (as it did also for the exponential fit to the correlation length 5 ,  see later). We have 
tried fits with different fixed power P .  and for the fit to xo (the fit to c(') has a larger 
indetermination, see later) we find that a power of 3 or 5 gives cleary worse results than a 
power 4. So we have eventually used the three-parameter fit to the form 

xo = A:( e ~ p { ( B $ / T ) ~ l -  1) + C: (38) 

which gives results 

A,X = 1.67 & 0.05 B," = 5.38 i O . 0 1  C: = 1.28 f 0.05. (39) 

The best fit is very good, and we show it in figure ll(b). The value of xz is much better 
than for the power fit (12 compared with 29 with some slightly arbitrary normalization). 

The divergence of the correlation length as a function of (T - T,) gives, if a phase 
transition exists, the exponent v .  We have repeated here the analysis we have discussed for 
xo. In figure 12 we give e(')  (which we have defined earlier) as a function of T .  tC0) is 
always compatible with t(I), but has a larger statistical error. 

Our estimator for :(I) is defined by taking the weighted average of the effective mass 
estimator at distance d 

h ( d )  log (g2,)) (40) 

(where G(' )  was defined after (11)) for d going roughly from 5 to 26. In this way we are 
making systematic effects (coming from small distance contributions) and statistical errors 
small. A typical fitting window is d from 2 to 3 at large T down, for example, to 8 to 15 at 
T = 3.7. We have estimated errors by using a standard binning plus jack-knife procedure. 
Our conclusions about the statistical significance of the sample coincide with the ones we 
have drawn for XO. 

Also in this case we have tried a power fit and an exponential fit. For the power fit we 
used the form 
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3.5 4 4.5 5 5.5 6 
1 

Figure 12. The correlation length a"', averaged over lhe two different samples. The 
here only to join neighbouring points. 

c u e  is 

with the result 

AB = 2.73 i 0.1 1 Tc = 3.24 & 0.03 U = 1.20 f 0.04. (42) 

Even if the results are very reasonable, the fit is not good (as shown in figure 13(a)). 
The value of xz is very high (E 120), and the points close to Tc are the ones that do not fit 
(very dangerous caveat!). Still, if we take these data seriously, we have to notice that T, is 
the same we estimated by using XO. and that by means of the scaling relation 

Y = u ( 2 - v )  (43) 

we get q E 0. 
The exponential fit has the form 

{ E A i (  e ~ p { ( B i / T ) ~ )  - 1) + C.f (44) 

and gives 

A ~ = 1 . 4 1 & 0 0 . 0 5  B~=4.21&OO.O2 CE=0.46i0.01. (45) 

,This, best fit is very good, and we show it in figure 13(b). The x 2  is four times smaller 
than for the power fit. This fit is by far a better fit than the fit to a power-law behaviour. 

For f the evidence for the power in the exponential being 4 is less compelling than for 
X O .  Here fits with power 2, 3 or 5 are acceptable; also if the x 2  is a minimum at power 
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-. ." -. . . .  . .. . ^  . . .  rigure 13. [ne common  iengm, as in ngure IL. Here me curves are me resuiis 01 [ne Den 
fits. In (a)  we show the result of the power i i t  to the form (41). and in (6) the result of the 
power fit to the form (44). 

4 (or 5. which gives a very similar fit: for power 3 a small decrease in quality is already 
apparent). 

In figure 14 we show the data for 

from the data we have already shown for m, the inverse correlation length. We expect both 
quantities to diverge as inn in the small-m limit. Both quantities are well fitted by a power 
law with 7 - -0.25. 

An independent way to measure 1 is to study directly the data for the correlation function 
G('). At large distances the data can be fitted by 
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2 ( p )  seems to diverge close to the critical temperature. with a very small power - m-O.', 
making this estimate of q quite different from the previous one. The discrepancy between 
the two estimates of 11 is likely to be related to the small asymptotic value of 7. 

As a check we have analysed the data for the correlation function 

C(s) - r G ( ' ) ( r ) / 2 ( p )  (48) 

in the scaling region as a function of s 3 r / t .  The fact that the exponentially decaying 
fits to the correlation function are good implies that for s > 1 the function C(s) is well 
approximated by eYS. At small values of s the function should go to zero as sR, Alas, since 
we cannot reach very small values of s it is difiicult to use this method to get a precise 
determination of q. 

Let us insist on the difficulty in reaching a definite conclusion about the critical regime 
by presenting some more fits (figures 15 and 16). Here we are analysing the overlap 
susceptibility xo as a function of B .  In figure 15 we show the best fit to the form (35) with 
the parameters given in (36) (with a transition at a critical temperature), and we superimpose 
a second fit of the form 

log(x0) = Ae(@) (49) 

with A = 0.085 and B = 15.16. Again, although the two functional forms imply a very 
different critical behaviour, in the region we have studied they are indistinguishable. 

We can try more. A similar phenomenon is displayed in figure 16. Here we show 
dependencies that imply a transition at zero temperature 

In the first-best fit we find A = 383 and o = 3.33, while in the second-best fit we get 
A = 5.9, B = -69.8 and C = 246. o turns out to be not so far from 4, as we have already 
remarked. 
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7.0 

0.16 0.18 0.2 0 22 0 24  0 26 0 28 

P 

Figure 15. Two fils to the data for the susceptibility xu. as a function of p. according to 
equations (35) and (49). 

0.16 0.18 0.2 0.22 0.24 0.26 0.28 

P 
Figure 16. Two fits to the data for the susceptibility XU. 3s a function of p. according to equation 
(50). 

The four fits all give reasonable results. It is impossible to use the data to reject one of 
them. Of course we could choose the one with smallest x2, but this procedure may give 
an incorrect answer since we have neglected sub-asymptotic terms, inducing a systematic 
error which is out of control. 

From these data, we tend to conclude that we have a hint about the absence of a phase 
transition in the 3D spin glass. If, on the contrary, such a phase transition is present, than 
we have given a reasonably precise estimate of the critical exponents. 

5. Conclusions 

We believe we have pointed out an open problem that in recent papers was quoted as 
solved. Nowadays it is usually said that the existence of a phase Wansition is established. 
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For example in [9], which is about aging phenomena (see [ I  I] for more aging papers), i f  is 
claimed that it is common lore that 3D spin glasses undergo a finite Tc phase transition. It 
does not seem to us that the existence of a phase transition is well established at all. 

The possibility of three being the lower critical dimension is appealing. We have in 
mind a scenario where the predictions of the mean-field theory describe fairly well the 
behaviour of the system down to d = 3, where the transition disappears. In no cases, as it  
is sensible to expect, does the system behave as a normal ferromagnet. At low T in 3D the 
system is reminiscent of the mean-field picture up to a critical length which is function of 
T, and diverges at T = 0. 

As was noted many years ago in [19], at the lower critical dimension we expect I/f 
noise for the power spectrum of the magnetization; this agrees with what has been observed 
experimentally [20]. 

It is clear that there is an apparent critical temperature. Close to this pseudo-T, the 
correlation length becomes so large that it cannot be measured on the lattice sizes that 
are normally studied. Below this temperature the system behaves as if i t  is in the low- 
temperature phase, irrespective of the existence of the transition (think about the I D  normal 
Ising model for low values of T). 

The only way to disprove the existence of a transition at finite temperature would be 
to show that the data for the susceptibility and the correlation length cannot be fitted with 
power-law singularities at finite temperature. On the other hand, to present evidence for 
a transition at finite temperature one should show that the data can be fitted as power-law 
singularities and cannot be fitted with functions having only singularities at zero temperature. 
Our data, as well those from the very long simulations of Ogielski and Morgenstern [3,5], 
can be fitted in both ways. As we already said, we do not think that we can discriminate 
between the two admissible behaviours from the value of xZ. i.e. of the quality of the fit, 
especially in an approach where corrections to scaling have been neglected. Unfortunately, 
in the absence of clear predictions about the low-temperature behaviour, it is difficult to 
exclude the possibility of a transition at T = 0. 

To visually discriminate among the two possibilities we plot in figure 17 the quantity 

7 0,100 

0.0100 ' 
1 In ( x )  

Figure 17. plotted against r (see the definitions in the text). 
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against r log(X0). A finite-T transition implies that 

r 5 e-Ar (52) 

with A = l / y ,  while a transition at T = 0 with a divergence of the form exp(p'") implies 

1 
r B  

r - -  (53) 

with B = 1 - l/o. B = 1 corresponds to an exp(e8) behaviour. Our best fits give A = 0.29 
and B = 0.86. The data are noisy at high temperatye (low r). Clearly it is difficult to 
select one fit, especially since we have neglected corrections to scaling. The data seem to 
prefer a straight line with a coefficient not far from one, but we are unwilling to rely on 
this kind of evidence. 

- 
%a I--- 

3.3 3,s I 7  4 ,  a 3  
T 3 s  

Figure 18. logxo plotted against T. Fit I (full curve) is to a power-law singularity, as in (35); 
fit 2 (broken curve) has a T = 0 singularity, as in (49). 

What can be done with a better numerical simulation? To get a hint we have extrapolated 
two typical fits at a reasonable low T. We show them in figure 18. We have considered 
a simple power singularity at T # 0, and a divergence at T = 0 of the form exp(Aea]. 
From our present best fits we can deduce that at, say, T = 3.4, we would be able to 
discriminate between the two. If the data really followed the finite-T singularity scenario 
(the first case), the strong increase of the susceptibility could not be fitted by the double 
exponential scenario, and the zero-temperature transition would be refuted. 

In the opposite case, where the hypothetical data follows a form of the second kind (a 
double exponential singularity at T = 0) we find that a power fit would still be a good fit, 
but with a larger value of y and smaller value of Tc. This variation of the value of the 
best-fit parameters with the temperature interval used for the fitting would then be taken as 
good evidence for the existence of a zero-temperature transition. 

If the double exponential singularity behaviour is correct, the correlation length should 
increase by a factor of about 2.5 when going from T = 3.6 to T = 3.4. This means 
that a reliable estimate would be possible on 12S3 lattice, only slightly larger than that we 
used here. and not out of the reach of the present technology. An increase in the computer 
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time of more than one order of magnitude seems unfortunately necessary, but this is also a 
reasonable goal. Such a computation seems possible in the not too distant future. 

It is also possible that a careful analysis of the model at low T could allow one to show 
the absence of a phase transition [21-231. In this case it would be essential to identify the 
renormalization group flow away from the zero-temperature fixed point. 
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